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Abstract. Darboux transformations are used to find non-local symmetries of integrable
nonlinear models which include the KdV, KP, CDGKS and(2 + 1)-dimensional CDGKS
equations.

An infinite number of symmetries and Darboux transformations are two intriguing properties
which had been shown to be among the most intrinsic features of soliton systems such as the
Korteweg de Vries (KdV), sine-Gordon (SG) and nonlinear Schrodinger (NLS) equations.
Roughly speaking, a symmetry group of a system of differential equations is a group
which transforms solutions of the system to other solutions. In general, we can derive
corresponding symmetries from invariant transformations of a differential equation under
consideration. Let us take the KdV equation as an example. The KdV equation is

ut − 6uux + uxxx = 0 (1)

where the subscripts represent derivatives.x-translation, t-translation and Galilean
invariances of (1) lead to symmetries:ux, ut and tux + 1

6, respectively. Recently, one
of the authors (Lou) re-obtained the non-local symmetryσ = (φ2)x from the conformal
invariance of the Schwartz form of the KdV equation (1) [1], whereφ is a spectral function
of Lax pair

−φxx + uφ = λφ (2)

φt = −uxφ + (2u+ 4λ)φx. (3)

It should be noted that the non-local symmetryσ = (φ2)x is closely connected with the
squared eigenfunctions of the Lax operators in the inverse scattering transform. This type of
symmetry has been recognized for over 20 years as the solution of the linearized integrable
equations, originally by Kaup [2] (this is an extension of the observation for the KdV by
Gardneret al [3]).

On the other hand, the Darboux transformation (DT) is the most direct and yet
elementary approach for the construction of exact solutions (see, e.g., [4–8]). Using the DT
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method, we can obtain new solutions from old solutions. That means the DTs of integrable
equations reflect some invariant properties of the equations under consideration.

It is known that to search for non-local symmetries is of considerable interest. The
non-local symmetries thus obtained enlarge the class of symmetries and are connected with
integrable models. Now a natural problem is how to find non-local symmetries? An effective
method for finding non-local symmetries seems to be to find the inverse of the corresponding
recursion operators (see [9, 10]). However, to find the inverse of the recursion operators is
in itself a difficult problem.

The main purpose of this paper is to show how these kinds of non-local symmetries
can be obtained natually by Darboux transformations. We will use the invariant properties
of differential equations exhibited by DTs to deduce the non-local symmetries of the KdV,
KP, CDGKS and(2+ 1)-dimensional CDGKS equations.

Let us first consider the KdV equation (1). In this case, we know that:

Proposition 1[5, 7, 8]. Let u be a solution of the KdV equation (1), whereφ satisfies
(2), (3). Thenu = u− 2∂2 ln φ/∂x2 is a solution of (1).

Now using the DT above, we have

Proposition 2. σ = (ψ̃/ψ)
xx

is a symmetry of the KdV equation (1), whereψ̃(x, t), ψ(x, t)
satisfy the following equations:

ψxx − (u+ 2(ln ψ)xx) ψ = 0 (4)

ψt + (ux + 2(ln ψ)xxx) ψ − 2(u+ 2(ln ψ)xx) ψx = 0 (5)

−ψ̃xx + (u+ 2(ln ψ)xx) ψ̃ = ψ (6)

ψ̃t + (ux + 2(ln ψ)xxx) ψ̃ − 2(u+ 2(ln ψ)xx) ψ̃x = 4ψx. (7)

Proof. Set U = u − 2∂2 ln φ(x, t,0)/∂x2. From proposition 1, we know thatU is a
solution of the KdV equation (1). Now we formally expandu in powers ofλ. We have

u = U + λ
[(
−2

∂2

∂x2
ln φ

)
λ

∣∣∣∣
λ=0

]
+O(λ2).

Thus (∂2 ln φ/∂x2)λ|λ=0 is a symmetry of the KdV equation with respect toU . Finally,
substitutingu = U + 2∂2 ln φ(x, t,0)/∂x2 in (2), (3) leads to (4)–(7) withU replaced by
u, φ(x, t,0) by ψ(x, t) andφλ(x, t,0) by ψ̃(x, t). Thus we have completed the proof of
proposition 2.

Furthermore, a direct calculation shows that ifψ satisfies (4), (5), then

ψ̃ = −ψ
∫ x

x0

[
1

ψ2

∫ x

x0

ψ2 dx

]
dx + A(t)ψ

∫ x

x0

1

ψ2
dx + B(t)ψ

is a solution of (6), (7), where

A(t) =
∫ t

(2ψψxx − 4ψ2
x )
∣∣
x=x0

dt (8)

B(t) =
∫ t
(

4
ψx

ψ
+ 2A(t)

ψxx

ψ3

)∣∣∣∣
x=x0

dt. (9)
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Moreover, it can easily be verified that ifψ is a solution of (4), (5), thenφ = 1/ψ satisfies
(2), (3) with λ = 0, i.e.

−φxx + uφ = 0

φt = −uxφ + 2uφx.

To sum up, we have:

Proposition 3.

σ =
[
−φ2

∫ x

x0

1

φ
2 dx + A1(t)φ

2+ A2φ
2

]
x

is a non-local symmetry of the KdV equation (1), whereφ(x, t) satisfies (2), (3) withλ = 0,

A1(t) =
∫ t
t0
(−2φxx/φ

3
)|x=x0 dt andA2 is a constant.

Note that by takingA2 −→ ∞, andA2 = 0, respectively, we re-obtain the two seed
symmetries of the KdV equation [9].

Next we consider the KP equation. The KP equation reads

(ut − 6uux + uxxx)x + 3σ 2uyy = 0 σ 2 = ±1. (10)

Its Lax pair is

σφy + φxx − uφ = λφ (11)

φt + 4φxxx − 3uxφ − 6uφx + 3σ(∂−1
x uy)φ = 0. (12)

From [7, 8], we know:

Proposition 4. Let u be a solution of the KP equation (10), withφ satisfying (11), (12).
Thenu = u− 2∂2 ln φ/∂x2 is a solution of (10).

Now using the DT above and in a manner similar to that of proposition 2, we have:

Proposition 5. 6 = (
ψ̃/ψ

)
xx

is a symmetry of the KP equation (10), whereψ̃(x, y, t),
ψ(x, y, t) satisfy the following equations:

σψy + ψxx − (u+ 2(ln ψ)xx) ψ = 0 (13)

ψt + 4ψxxx − 3(ux + 2(ln ψ)xxx) ψ − 6(u+ 2(ln ψ)xx) ψx

+3σ
(
∂−1
x uy + 2(ln ψ)xy

)
ψ = 0 (14)

σψ̃y + ψ̃xx − (u+ 2(ln ψ)xx) ψ̃ = ψ (15)

ψ̃t + 4ψ̃xxx − 3(ux + 2(ln ψ)xxx) ψ̃ − 6(u+ 2(ln ψ)xx) ψ̃x

+ 3σ
(
∂−1
x uy + 2(ln ψ)xy

)
ψ̃ = 0. (16)

A direct calculation shows that ifψ satisfies (13), (14) andψ∗ satisfies

−σψ∗y + ψ∗xx −
(
u+ 2(ln ψ∗)xx

)
ψ∗ = 0 (17)

ψ∗t + 4ψ∗xxx − 3
(
ux + 2(ln ψ∗)xxx

)
ψ∗ − 6

(
u+ 2(ln ψ∗)xx

)
ψ∗x

− 3σ
(
∂−1
x uy + 2(ln ψ∗)xy

)
ψ∗ = 0 (18)
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then

ψ̃ = ψ
∫ x

x0

1

ψψ∗
dx ± σyψ ∓ ψ

∫ y

y0

f (y, t) dy + ψ
∫ t

g(t) dt

is a solution of (15), (16), where

f (y, t) =
[

1

ψ

(
1

ψ∗

)
x

− 1

ψ∗

(
1

ψ

)
x

]
x=x0

(19)

g(t) =
[

6
u

ψψ∗
+ 4

ψxxψ
∗ + ψxψ∗x + ψψ∗xx
ψ2ψ∗2

− 8
ψ2
x

ψ3ψ∗
− 8

ψ∗2x
ψψ∗3

]
x=x0,y=y0

. (20)

Moreover, it can easily be verified that ifψ is a solution of (13), (14) andψ∗ is a solution
of (17), (18), thenφ = 1/ψ∗ satisfies (11), (12) withλ = 0 andφ∗ = 1/ψ satisfies

−σφ∗y + φ∗xx − uφ∗ = 0 (21)

φ∗t + 4φ∗xxx − 3uxφ
∗ − 6uφ∗x − 3σ(∂−1

x uy)φ
∗ = 0. (22)

To sum up, we have:

Proposition 6. 6 = (φφ∗)x is a non-local symmetry of the KP equation (10), whereφ and
φ∗ satisfy (11), (12) withλ = 0 and (21), (22).

Remark. This symmetry was obtained in the literature.

We now turn to consider the(1 + 1)-dimensional CDGKS equation. The(1 + 1)-
dimensional CDGKS equation under consideration [11] is

ut = uxxxxx + 5uxuxx + 5uuxxx + 5u2ux. (23)

Its Lax pair is

φxxx + uφx = λφ (24)

φt = −9φxxxxx − 15uφxxx − 15uxφxx − (10uxx + 5u2)φx. (25)

Concerning the(1+ 1)-dimensional CDGKS equation (23), we have:

Proposition 7[12]. Let u be a solution of the CDGKS equation (23), withφ satisfying
(24), (25). Thenu = u+ 6∂2 ln φ/∂x2 is a solution of (23).

Now using the DT above, we have:

Proposition 8. σ = (ψ̃/ψ)
xx

is a symmetry of the CDGKS equation (23), whereψ̃(x, t),
ψ(x, t) satisfy the following equations:

ψxxx + (u− 6(ln ψ)xx) ψx = 0 (26)

ψt = −9ψxxxxx − 15(u− 6(ln ψ)xx) ψxxx − 15(u− 6(ln ψ)xx)x ψxx

− [10(u− 6(ln ψ)xx)xx + 5(u− 6(ln ψ)xx)
2]ψx (27)

ψ̃xxx + (u− 6(ln ψ)xx) ψ̃x = ψ (28)

ψ̃t = −9ψ̃xxxxx − 15(u− 6(ln ψ)xx) ψ̃xxx − 15(u− 6(ln ψ)xx)x ψ̃xx

− [10(u− 6(ln ψ)xx)xx + 5(u− 6(ln ψ)xx)
2] ψ̃x. (29)

Proof. The proof is similar to that of proposition 2.
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Finally, we consider the(2+ 1)-dimensional CDGKS or BKP equation. The(2+ 1)-
dimensional CDGKS equation under consideration is

ut = uxxxxx + 5uxuxx + 5uuxxx + 5u2ux + 5uxxy + 5uuy + 5ux∂
−1
x uy − 5∂−1

x uyy. (30)

Its Lax pair is

φxxx + uφx + φy = λφ (31)

φt = −9φxxxxx − 15uφxxx − 15uxφxx − (10uxx + 5u2− 5∂−1uy)φx. (32)

Concerning the(2+ 1)-dimensional CDGKS equation (30), we have:

Proposition 9[12]. Let u be a solution of the(2+ 1)-dimensional CDGKS equation (30),
with φ satisfying (31), (32). Thenu = u+ 6∂2 ln φ/∂x2 is a solution of (30).

Now using the DT above, we have:

Proposition 10. σ = (ψ̃/ψ)
xx

is a symmetry of the(2+ 1)-dimensional CDGKS equation

(30), whereψ̃(x, y, t), ψ(x, y, t) satisfy the following equations:

ψxxx + (u− 6(ln ψ)xx) ψx + ψy = 0 (33)

ψt = −9ψxxxxx − 15(u− 6(ln ψ)xx) ψxxx − 15(u− 6(ln ψ)xx)x ψxx

− [10(u− 6(ln ψ)xx)xx + 5(u− 6(ln ψ)xx)
2

− 5∂−1 (u− 6(ln ψ)xx)y
]
ψx (34)

ψ̃xxx + (u− 6(ln ψ)xx) ψ̃x + ψ̃y = ψ (35)

ψ̃t = −9ψ̃xxxxx − 15(u− 6(ln ψ)xx) ψ̃xxx − 15(u− 6(ln ψ)xx)x ψ̃xx

− [10(u− 6(ln ψ)xx)xx + 5(u− 6(ln ψ)xx)
2

− 5∂−1 (u− 6(ln ψ)xx)
]
ψ̃x. (36)

Furthermore, a direct calculation shows that ifψ satisfies (33), (34), then

ψ̃ = yψ + A
is a solution of (35), (36), whereA is a constant. Moreover, it can easily be verified that if
ψ is a solution of (33), (34), thenφ = 1/ψ satisfies (31), (32) withλ = 0, i.e.

φxxx + uφx + φy = 0 (37)

φt = −9φxxxxx − 15uφxxx − 15uxφxx − (10uxx + 5u2− 5∂−1uy)φx. (38)

To sum up, we have:

Proposition 11. σ = φxx is a symmetry of the(2+ 1)-dimensional CDGKS equation (30),
whereφ(x, y, t) satisfies (37), (38).

Remark. This symmetry was obtained by a direct calculation in [13].

In summary, to find non-local symmetries is an interesting but difficult problem.
Darboux transformations provide a natural approach for the derivation of non-local
symmetries. Since Darboux transformations can be available for most integrable systems, it
would be possible to extend the results in the paper to many interesting integrable models
and the corresponding non-local symmetries could be derived.

The work was supported by National Natural Science Foundation of China.
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